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ABSTRACT 

The conception of a heat function, just like the stream function used in a laminar two dimensional 
incompressible flow field visualization, has been introduced to visualize the convective heat transfer or the 
flow of energy around a sphere when the sphere is either being cooled or heated by a stream of fluid 
flowing around it. The heat function is developed in a spherical polar coordinate and is used to generate 
the heat lines around the sphere. The heat lines essentially show the magnitude and direction of energy 
transfer around the sphere with and without the existence of a finite radial velocity at the surface. The 
steady state hydrodynamic field around the sphere is numerically obtained up to a maximum Reynolds 
number of 100 and the corresponding thermal field has been obtained by solving the steady state energy 
equation. The field properties thus obtained are utilized to form the heat function, which becomes an 
effective tool for visualization of convective heat transfer. 
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INTRODUCTION 

Flow visualization by experimentation has become a very important tool to 'see' the flow pattern 
in complex geometries where flow field solution by numerical methods is still a non-trivial 
problem. In such cases, experiments have helped tremendously to understand the behaviour of 
the flow field and hence the physical situation. A straight flow visualization technique gives 
enough impression of the local velocity field but it has to be photographed for future reference 
and further study. The development of stream function has helped engineers to see the flow field 
as and when required, by numerically generating the stream lines in a flow field. As the tangent 
to the stream lines give the direction of velocity at that point, a family of stream lines essentially 
present a 'bird's eye' view of the entire flow field in two dimension. But they do not give any 
direct impression regarding the magnitude of the velocity at any point. Moreover, development 
of stream lines for three dimensional flow is not possible. Thus the conception of stream lines 
is limited to two dimensional incompressible flow situations. But recently, because of higher 
graphics handling capabilities of computers, it has become popular to represent the flow field 
by velocity vector plots as a means of numerical flow visualization. In this regard, nothing stands 
comparable to velocity vector plots in the flow domain. These give a quantitative idea of 
the local velocity along with its direction. 

An understanding of the flow field helps to analyze the heat transfer characteristics in it, for 
which flow visualization is so important in the field of heat transfer. But the use of an efficient 
tool for direct visualization of heat transfer is not found except the visualization of isotherms 
which is only meaningful in case of pure conduction heat transfer where the flow of energy is 
locally orthogonal to the isotherms. But isotherms fail to represent the flow of energy in convective 
heat transfer because in convection, there are two parts of energy transfer, one through convection 
(pCpUT) and the other conduction ( — K∂T/∂X). It was Bejan who felt the need to develop a 
proper tool for visualizing convective heat transfer and suggested the use of a heat function. He 
has developed a heat function which is capable of representing the convection heat transfer in 
a cartesian coordinate system1,2. Like the stream lines, heat lines are locally parallel to the 
direction of energy flow, hence energy flow does not cross any heat line. It is believed that the 
heat function is a proper tool for energy flow visualization in a convective medium and there 
will be more discussions on it in the present work. 

The main objective of the present work is to generate methodology to develop a heat function 
(following the work of Kimura and Bejan1) for a spherical polar coordinate system, which can 
generate heat lines to show the energy flow around a sphere when the sphere is either being 
cooled or heated by the surrounding fluid stream. For this purpose the flow field around a 
sphere is solved for various Reynolds number (to a maximum of 100) and then the steady state 
energy equation has been solved to predict the temperature field. The effect of radial mass efflux 
from the surface of the sphere, has also been taken into consideration for visualizing the energy 
flow around it. The predicted velocity and temperature fields help to generate the heat function, 
which is found to be a very effective tool for visualizing convective heat transfer. 

STATEMENT OF THE PROBLEM 

Consider a solid spherical particle of radius a', having an initial temperature Ti, which is suddenly 
immersed in an unbounded laminar flow with a temperature of T∞ (Figure 1). It is assumed 
that, far away from the sphere, the free stream temperature remains fixed at T∞. It is also assumed 
that the flow field around the particle is axisymmetric (symmetric in ø) and steady; the fluid 
velocity U∞ is uniform far from the sphere. If T∞ > Ti then the sphere is being heated by the 
surrounding flow, otherwise the sphere is being cooled. The heat conductance and the heat 
capacity ratio of the sphere to that of the surrounding fluid (ρC)spher/(ρC)fluid is assumed to be 
so high that its bulk temperature does not change with time and also there exists no temperature 
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gradient within it. The above assumption is reasonable only for metallic spheres in a gaseous 
or liquid environment. Theoretically, if (ρC)fluid/(ρC)sphere is zero, then the bulk temperature of 
the sphere never changes with time. For instance, the heat capacity ratio of air to that of a 
nickel sphere is 0.00016 and to that of an iron sphere is 0.00034. These values are practically 
very low to keep the sphere at a constant temperature of Ti, i.e. at the initial temperature of the 
sphere. Hence the temperature field around the sphere is assumed to be steady and like the flow 
field the temperature field is also assumed to be axisymmetric. The free stream temperature, T∞ 
is assumed to be low such that the energy interaction due to radiation can be neglected. It is 
intended to visualize the convective heat transfer from the sphere for the above situation. 

Governing equations 
The flow field around the sphere can be expressed by the steady, axisymmetric incompressible 

Navier-Stokes equation in the form of non-dimensional stream function and vorticity as3,4: 

where 

The radial and tangential velocity components at any point in the flow field can be obtained 
from (4) and (5): 

The steady state convective heat transfer from the sphere is governed by the following 
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dimensionless energy equation for the fluid5,6: 

As the main objective of the present work is to visualize the convective heat transfer, we will 
now proceed to formulate the 'Heat Function' H. In convection, the transport of energy through 
the flow field is a combination of both thermal diffusion and enthalpy flow. For any such field 
the heat function H'(r', θ') can be defined such that the net flow of energy (sum of thermal 
diffusion and enthalpy flow) across each H' = constant line is zero. The mathematical definition 
of the Heat function, H', follows in the steps of (4) and (5) if, this time, the aim is to satisfy the 
energy equation. For a steady state convection through a constant property homogeneous fluid1,7 

the energy equation in the spherical polar coordinate is: 

Now, the heat function, H', can be defined as: 

It can be readily seen that equations (8) and (9) identically satisfy the energy equation (7). 
In order to compute the heat function H'(r', θ') in the flow field a Poisson-type partial differential 

equation was obtained from equations (8) and (9) in the following way. 
Differentiate (8) with respect to θ, multiply r' to (9) and then differentiate it with respect to r'. 

Subtract the latter from the former to obtain the following heat function equation: 

Equation (10) can be written in the non-dimensional form as: 

where 

For the solutions of (1), (2), (6) and (11) the following boundary conditions3 were utilized: 
At free stream (r→ ∞) 
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It is to be noted that the term containing Vs in boundary condition (13a) includes the effect of 
mass efflux so that the conservation of mass is satisfied within the domain. As r approaches ∞, 
(13a) automatically satisfies velocity relationships (4) and (5). 
At the surface (r = 1) 

Boundary condition (14d) is obtained from the fact that Vθ and ∂T/∂θ are zero at the surface. 
Axisymmetric conditions 
At θ = 0 

Values of H at r = 1 and θ = 0 and π can be obtained from (8) by integrating it from θ = 0 to π, 

where Nu is the conduction referenced Nusselt number and is given by: 

H at r = 1 and θ = 0 is identically zero. 

METHOD OF SOLUTION 

Equations (1), (2), (6) and (11) were solved by the finite difference method using a point SOR 
scheme. For solving these equations the transformation r = ez was introduced for the radial 
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Table 1 Comparison of characteristic parameters for thermal flow past a sphere 

Re 

1 
10 

50 

75 
75 

100 

Pr 

10 

Zx 

3.5 
3 

2.5 

2.5 
2.5 
2.5 

M x N 

2 0 x 3 0 
2 5 x 3 0 

3 2 x 4 5 

3 2 x 4 5 
3 2 x 4 5 
3 2 x 4 5 

Present 
model Eq. 20 

27.80 
4.43 

(4.40) 
1.69 

(1.65) 
1.41 

1.20 
(1.187) 

27.40 
4.24 

1.63 

1.34 

1.186 

Nu 

Present model 

3 pt. 4 pt. 

2.32 
3.62 

6.09 

6.99 
13.11 
7.83 

2.28 
3.62 

(3.59) 
6.02 

(6.01) 
6.85 

13.42 
7.62 

(7.70) 

Eq. 21 

2.26 
3.65 

6.00 

6.89 
13.64 
7.63 

(Bracketed values of CD and Nu are from Reference 10) 

coordinate as suggested by several earlier workers3,4,6,8 to obtain a denser mesh near the surface 
of the sphere, where the stream function, vorticity and temperature gradients are relatively large, 
and, hence, higher accuracy of the difference approximation is needed. For the solution of (1), 
(2) and (6), the external boundary was kept at a finite radial distance (r∞) from the centre of the 
sphere in accordance with the Peclet number (Pe) being used, following the recommendation of 
the literature3,4,6. Constant step sizes in the radial (ΔZ) and angular (Δθ) coordinates were used 
where they can be expressed as: 

Δθ = π/M, r∞ = ez∞ and AZ = Z∞/N 
where M + 1 and N + 1 are the number of mesh points in the angular and radial direction 
respectively. All the derivatives for (1) and (2) were expressed in central difference up to Re = 100. 
Relaxation factors for the solution of ψ and ζ were kept at 1 and 0.1 respectivelt up to Re = 50. 
For Re above 50, relaxation factor for ψ was kept at 1 whereas for ζ it was reduced to 0.08. 
Details about the use of relaxation factors in the whole range of 1 < Re< 100 can be found in 
References 4, 6. 

For the solution of steady state energy equation (6) central differencing was applied with all 
the derivatives for solutions up to a maximum Peclet number of 100. But for Pe above 100, in 
order to increase the stability of the finite difference scheme, first order upwind differencing was 
introduced for the convective terms in (6). Symmetry boundary conditions were approximate 
with second order accuracy. A relaxation factor of 0.4 was used for Pe< 10. In the range of 
10≤Pe≤50, the relaxation factor was kept at 0.2 and in the range of 50<Pe< 100, it was 
kept at 0.08. With the use of upwind scheme the relaxation factor could be raised to 1.2. The 
energy equation (6) was solved for two levels of free stream temperature (T∞ = 0 and 3). The 
tolerance limit for the convergence of the temperature field was kept at 10-5 from one iteration 
to the other. It may be noted that grid sizes as recommended by Abramzon and Elata8 were chosen. 

Before proceeding to solve the heat function equation (11), the accuracies of the ψ, ζ and 
temperature fields were tested through the drag coefficients, CD (defined in Reference 5) and the 
Nusselt number according to equation (18). Reference values of CD for a single sphere was taken 
from White9 and the finite element solution of Ramachandran et al.10, while the Nusselt number 
was taken from the empirical correlation of Clift et al.11,10. It can be worth mentioning here 
that while approximating temperature gradient on the sphere surface (—∂T/∂r) to compute Nu, 
the use of a four point formula was necessary because the standard three point differencing did 
not give correct values in some cases, as evident from Tables 1 and 2. 
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Table 2 Characteristic parameters for thermal flow past 
a sphere with surface blowing (Vs = 0.2) 

Re 

10 
50 
75 
75 

100 

Pr 

1 
1 
1 

10 
1 

Zx 

3 
2.5 
2.5 
2.5 
2.5 

M x N 

2 5 x 3 0 
3 2 x 4 5 
3 2 x 4 5 
3 2 x 4 5 
3 2 x 4 5 

Nu (18) 

3 pt. 

2.68 
2.03 
1.68 

-0.268 
1.41 

4 pt. 

2.66 
2.02 
1.66 
0.347 
1.39 

The heat function θ, equation (11), was solved by a point SOR scheme after expressing (11) in 
a finite difference form. The standard space centred differencing was used for all the terms in 
(11). The right hand side of (11) behaves as the source term because all the parameters in it are 
predetermined from the solution of velocity and temperature field. Relaxation factor used for 
the solution of (11) was kept at 1.75 up to a Pe of 50. In the range of 50 ≤ Pe ≤ 100, the relaxation 
factor was kept at 1.2 and beyond this range, it was kept at 0.8. The H field was assumed to 
have reached convergence when the maximum spatial deviation in H, over the whole domain 
of computation was below 10 -6 from one iteration to the other. 

RESULTS AND DISCUSSION 

Nusselt number - an input to the H field 
It can be seen from (17) that Nu is required to fix the values of H at r = 1 and 0 = π. In fact 

this value of H remains constant on the line θ = π because ∂N/∂r = 0 on this line and similarly 
on θ = 0, H remains at zero. The values of Nu tabulated in Tables 1 and 2 are input to the 
computation of H field and hence, it is essential that these values are accurately computed. 

In the method of solution it is indicated that the accuracy of the flow field and the temperature 
field have been verified through the drag coefficient CD (as defined in References 5, 9) and the 
Nusselt number Nu. The drag coefficient for a single sphere according to White10 and the Nusselt 
number according to Clift et al.11 are expressed as: 

The values of CD and Nu are tabulated for various Re in the Table 1, for the case of no mass 
efflux on the sphere surface. It can be observed that our present computations agree very well 
with those of (20) and (21) as well as with the numerical (finite element) calculations of 
Ramachandran et al.10. Particularly for the case of Re = 50,75 and 100 a four point approximation 
to compute Nu, gives a better comparison with those of literature10,11. 

Table 2 shows the conduction referenced Nusselt number for the sphere when there is a 
constant radial mass efflux, present at the surface. For this case, it can be observed that the Nu 
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values decrease with Re when the non-dimensional mass efflux remains constant at Vs = 0.2. It 
is also worth mentioning that Nu at a particular Re decreases with the existence of radial mass 
efflux, which is very similar to the case of an evaporating drop. When there is a radial mass 
efflux at the surface of the sphere, the thermal boundary layer becomes thicker compared to the 
case of no mass efflux. Hence the temperature gradient on the sphere decreases compared to a 
no mass efflux situation and therefore, the Nusselt number decreases. As Re increases for a 
constant sphere diameter, the free stream velocity also increases and the surface blowing becomes 
stronger even though the non-dimensional radial velocity at the surface (Vs) remains fixed at 
0.2, because the reference velocity here is the free stream velocity. The stronger is the surface 
blowing, the thicker is the thermal boundary layer and the lower is the value of Nu. This is the 
reason why Nu falls with Re when the radial mass efflux remains constant. Again in Table 2 it 
can be seen that for the case of Re = 75, the use of a three point formula to compute Nu, gives 
an unrealistic value, while the four point formula does not. 

Visualization of energy flow 
Now, coming back to the visualization of convective heat transfer let us presently concentrate 

at Figure 2. In Figure 2a the local temperature field around the sphere is plotted in terms of 
isotherms up to a radius of 5.1a', for the case of Re = 1 and T∞ = 0. In Figure 2b the corresponding 
heat lines are shown which are starting normal to the sphere surface. The H lines are almost 
orthogonal to the isotherms in Figure 2a, for this Re, because for a low value of Re convection 
component of heat transfer is almost negligible in comparison to the conduction counterpart. 
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The radial curved heat lines show the direction of energy flow from the sphere to the free stream 
ambience, which is at a low temperature compared to the sphere. 

Figure 3 shows the comparison of energy flow from the sphere for the case of Vs = 0 (no surface 
blowing) and Vs = 0.2, with Re = 10, 50, 75 and 100, while the free stream temperature T∞ is set 
to be zero. The sphere is being cooled here and the energy plume rising from the surface of the 
sphere can be easily seen. The difference of H values between any two H = constant lines is 
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proportional to the energy flow between those two lines. It can be observed from Figure 3 
(Re = 10 case) that the amount of energy flowing between the lines H = 0 and H = 0.125, passes 
through a larger surface area compared to the case of the surface blowing (at same Re). When 
there is surface blowing, much of the energy is carried away by convection transport and hence 
through a smaller area large amount of energy can pass through. This fact is visualized in all 
the cases of Re ranging from 10 to 100. As Re increases the hydrodynamic and the thermal 
boundary layers become thin and energy transport from the sphere to the ambience occurs 
through a thinner surface area. For the case of Re = 75, H = 0 line starts very close to the front 
stagnation point of the sphere and for Re= 100, it starts from the top of the sphere almost at 
an angle of 0 = 30°. But with the presence of radial mass efflux the H = 0 line shifts to the left, 
which seems to be very logical, it can also be observed from Figure 3 that with the presence of 
a radial mass efflux the energy plume rises a little bit from the surface of the sphere before it is 
carried away by the surrounding fluid when compared to its non-blowing counterpart. 

From Figure 4 a comparison between the characteristics of energy flow for the case of a high 
Pr number can be drawn to that of a low Pr number case when the sphere is being cooled by 
the surrounding fluid (T∞ = 0). In Figure 4a negative heat lines are meeting the surface of the 
sphere and ∂H/∂θ is negative for θ < 90°. This suggests that the front half of the sphere is 
receiving energy from the ambient while the rear half of the sphere is releasing energy to the 
ambient where ∂H/∂θ is positive. This looks something different from our conventional thinking, 
but this is logical and an explanation to this will be made later. Such type of energy flow does 
not take place in the case of a low Pr number (Figure 3f) where the entire sphere is releasing 
energy to the ambient. In Figure 4b with the association of a radial mass efflux the picture of 
the energy flow changes entirely. Here the entire sphere is releasing energy to the surrounding 
fluid like its counterpart in Figure 3f. 
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Figure 5 represents the case of a sphere being heated by the surrounding fluid. As a test case 
T∞ is chosen as 3. Here energy is carried from the free stream (Figure 5a) and is fed to the 
sphere. In the front half of the sphere ∂H/∂θ is positive, suggesting that energy flow is almost 
radially outward. Due to the non-dimensional scheme of (12) H becomes negative because of 
the fact that T∞ > Ti. So the actual energy flow will be towards the sphere and the arrows are 
shown in its true sense to avoid confusion. But in Figure 5b the sphere is subjected to a case of 
heating by the surrounding fluid with the existence of a surface mass efflux and it so happens 
that energy goes away from the sphere instead of coming to it. Hence the sphere instead of being 
heated is being cooled and an explanation to this situation can be made in the following way. 
In the rear half of the sphere (Figure 5b), i.e.: for θ > 90°, the direction of velocity is away from 
the sphere. Energy flow in the flow field consists of two parts, one being the convection and the 
other conduction. Due to the high temperature surrounding fluid conduction heat transfer will 
be radially in while the convective heat transfer will be radially out. So, a race between the two 
modes of heat transfer takes place and where convection dominates over conduction the net 
energy flow takes the direction of convection. The same reason is applicable to the case of Figure 
4a where the front portion of the sphere receives energy from the flow field even though the 
surrounding fluid is at a low temperature compared to that of the sphere. 

CONCLUSIONS 

A heat function, similar to that of a stream function, has been introduced in the spherical polar 
coordinate system to visualize the direction of energy flow around a sphere when the sphere is 
either heated or is being cooled. Solutions of the steady state momentum and energy equation 
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have been obtained numerically around the sphere up to a maximum Reynolds number of 100 
and Pe number of 750 to visualize the energy interaction between the surrounding fluid and 
that of the sphere. It has been shown that there exists zones in the flow field which do not 
interact with the sphere so far as energy exchange with the sphere is concerned. It has also been 
established that the sphere can receive energy from the ambient fluid even if the ambient is at 
a low temperature compared to that of the sphere. This phenomenon of energy interaction with 
the sphere would not have been possible to visualize without the construction of the heat function 
or the heat lines. Hence, it is felt that the heat lines give more insight to the understanding of 
energy flow in convection heat transfer compared to the standard isotherm plots. 
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